
ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D. P.Eng.

Prof. Werner Dietl, Ph.D.

Prof. Douglas Wilhelm Harder, M.Math. LEL

© 2018-24 by the above. Some rights reserved.

Literal data

2
Literal data

Outline

• In this presentation, we will:

– Define literal data

– Describe:

• Integers

• Characters

• Strings

• Floating-point numbers (reals)

• Boolean

3
Literal data

Literals

• Often we must hard-code data into our programs

• Such data are called literals—they are literally what they represent

• We have seen:

– The integer 0

– A literal phrase of text "Hello world!"

• There are five categories of literal data:

– Integers

– Characters

– Strings

– Floating-point numbers

– Boolean

4
Literal data

Integer literals

• We have seen an integer literal
return 0;

• Any sequence of decimal digits not starting with a 0 is interpreted as
an integer literal, possibly prefixed with either + or -

-0 0 +0

-42 42 +42

-1023 1023 +1023

-1048576 1048576 +1048576

#include <iostream>

int main();

int main() {

std::cout << "The answer to the ultimate question is ";

std::cout << 42;

std::cout << std::endl;

return 0;

}
Output:

The answer to the ultimate question is 42

5
Literal data

Character literals

• Books are a sequence of letters, numbers or punctuation

• All of these symbols are collectively called characters

• There are two common representations of characters:

– ASCII1

– Unicode

1 American Standard Code for Information Interchange

6
Literal data

Character literals

• ASCII is limited to 128 characters stored in one byte

– 33 code for non-printing control characters (e.g., TAB, BS, CR, BELL)

BLANK! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _

` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~ DEL

• Most keyboards include all 95 printable ASCII characters and some
control characters

The BLANK TAB NL characters are

collectively called whitespace
characters

Reference: https://en.wikipedia.org/wiki/ASCII

https://en.wikipedia.org/wiki/ASCII

7
Literal data

Character literals

• Unicode is designed to encode most writing systems

– Unicode 11.0:

• contains 137,439 characters

• covers 146 modern and historic scripts

• symbol sets and emoji

8
Literal data

Character literals

• Printable characters (those on a keyboard) can be literally encoded
in C++ source code by using single quotes:

#include <iostream>

int main();

int main() {

std::cout << 'a';

std::cout << 'b';

std::cout << 'c';

std::cout << std::endl;

return 0;

}
Output:

abc

9
Literal data

Escape sequences

• Problem: How do you store a literal single quote?

• Solution: escape sequences

– An escape character indicates that the next character is interpreted

• For C++ characters, the escape character is \

– The compiler sees '\'' but treats it as the single ASCII character for

an apostrophe

• A literal backslash '\\'

• The TAB character '\t'

10
Literal data

End-of-line characters

• The ASCII representation was designed for teletype machines

– Automated typewriters

– The carriage return CR control character
('\r') moved the printing carriage back

to the start of the line

– The line feed LF control character ('\n')

rotated the roller for the next line

• The new-line character

• You needed to send both characters: CR LF

11
Literal data

End-of-line characters

• Computer screens automatically go to the start of the next line

– Unix (and now Linux and macOS) chose LF

– The classic Mac OS chose CR

– Microsoft DOS kept both: CRLF

• This causes compatibility and portability issues…

– In C, your code depends on the platform:

printf("Hello world!\n"); // Unix/Linux/macOS

printf("Hello world!\r"); // classic Mac OS

printf("Hello world!\r\n"); // Microsoft

– In C++, the compiler deals with it:

std::cout << "Hello world!";

std::cout << std::endl;

12
Literal data

• A sequence of characters is described as a string of characters

– More simply, a string

• When we include "Hello world!" directly in our source code, we call
this a string literal

– That is literally the string to be used

• A string encompasses all characters after the opening double quote
up to the closing double quote, which must be on the same line

• A string with a single character is not a character:

– 'a' and "a" are different

• A string with no characters is valid: ""

– '' is nonsensical: a character must be a character

String literals

13
Literal data

Escape sequences

• The escape sequence for C++ strings is also the backslash:

std::cout << "She said \"Hello world!\"";

std::cout << "Look in C:\\Users\\dwharder";

std::cout << "Times:\t0.1 s\t23.4 s\t56.789 s\t0 s";

She said "Hello world!"

Look in C:\Users\dwharder

Times: 0.1 s 23.4 s 56.789 s 0 s
| | | | |

Tab stops

14
Literal data

Escape sequences

• The escape sequence is only for encoding

– Internally, "She said \"Hello world!\"" is stored as 23

characters

• Escape sequences are common in computer programming:

– The Extended Markup Language (XML), tags use < and >

<p>Hello world!</p>

– How do you print < or > or non-ascii characters?

– XML uses & followed by ;

• > codes the greater-than symbol (>)

• ∞ codes the infinity symbol (∞)

• & codes the ampersand (&)

15
Literal data

Floating-point literals

• We cannot store real numbers to arbitrary precision

– p to 769 digits of precision:

3.1415926535897932384626433832795028841971693993751058209749445
923078164062862089986280348253421170679821480865132823066470938446
0955058223172535940812848111745028410270193852110555964462294895493038
19644288109756659334461284756482337867831652712019091456485669234603486104
5432664821339360726024914127372458700660631558817488152092096282925409171536436
789259036001133053054882046652138414695194151160943305727036575959195309218611738193
261179310511854807446237996274956735188575272489122793818301194912983367336244065664
308602139494639522473719070217986094370277053921717629317675238467481846766940513200
056812714526356082778577134275778960917363717872146844090122495343014654958537105079
2279689258923542019956112129021960864034418159813629774771309960518707211349999998···

• We can only store a finite number of digits of precision relative to a
decimal point

– We call such representations floating-point

16
Literal data

Floating-point literals

• Any sequence of decimal digits that has a decimal point (period)
somewhere is considered a floating-point literal

– Can be prefixed by either a + or -

-0.42 4.2 +42.0

+0.1023 -10.23 1023.0

0.1048576 +1048.576 -1048576.0

– Other representations are possible—we will discuss these later

17
Literal data

Floating-point literals

• Printing floating-point numbers is different printing other literals:

#include <iostream>

int main();

int main() {

std::cout << "Some floats: ";

std::cout << std::endl;

std::cout << 3.0;

std::cout << std::endl;

std::cout << 3.14;

std::cout << std::endl;

std::cout << 3.141592653589793;

std::cout << std::endl;

return 0;

}

Output:
Some floats:
3
3.14
3.14159

18
Literal data

Boolean literals

• The last category of literal in C++ are Boolean literals:

true|false

#include <iostream>

int main();

int main() {

std::cout << true;

std::cout << std::endl;

std::cout << false;

std::cout << std::endl;

return 0;

} Output:
1
0

19
Literal data

Sample code

• Examples of literal data are shown here:

https://replit.com/@dwharder/Literal-data

20
Literal data

Summary

• After this lesson, you now

– Understand the idea of literal data in source code

– You understand how to encode

• Integers

• Characters

• Strings

• Floating-point numbers (reals)

• Boolean

in your source code

– Everything else in C++ deals with the storage and manipulation of
data

21
Literal data

References

[1] Wikipedia

https://en.wikipedia.org/wiki/Literal_(computer_programming)

[2] cplusplus.com tutorial

http://www.cplusplus.com/doc/tutorial/constants/

[3] C++ reference

https://en.cppreference.com/w/cpp/language/integer_literal

https://en.cppreference.com/w/c/language/integer_constant

https://en.wikipedia.org/wiki/Literal_(computer_programming)
http://www.cplusplus.com/doc/tutorial/constants/
https://en.cppreference.com/w/cpp/language/integer_literal
https://en.cppreference.com/w/c/language/integer_constant

22
Literal data

Acknowledgments

Proof read by Dr. Thomas McConkey

23
Literal data

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

24
Literal data

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

