FACULTY OF ENGINEERING

Departrment of Electrical & ECE 150 Fundamentals of Programming

’mputer Engineering
“

@ UNIVERSITY OF WATERLOO ‘ .

.

»

~b’«"4‘ | v
EEFICOW

®OO

L@‘nm

Prof. Hiren Patel, Ph.D. P.Eng.
Prof. Werner Dietl, Ph.D.
Prof. Douglas Wilhelm Harder, M.Math. LEL

" © 2018-24 by the above. Some rights reserved.

W UNIVERSITY OF WATERLO®
N
&Y Depa

Outline

 In this presentation, we will:
— Define literal data
— Describe:
* Integers

Characters

Strings

Floating-point numbers (reals)

Boolean

UNIVERSITY OF WATERLO@ "~
FACUIinY OF ENGINEERING i
> Deparfment o_E\ec_tricaI &

" Computer Engineering

.

Literals

» Often we must hard-code data into our programs
« Such data are called literals—they are literally what they represent
* We have seen:

— The integer 0

— A literal phrase of text "Hello world!"

» There are five categories of literal data:
— Integers
— Characters
— Strings
— Floating-point numbers
— Boolean

@ of Electrica
% Computer Engineering

.

Integer literals

« We have seen an integer literal
return 0;

« Any sequence of decimal digits not starting with a 0 is interpreted as
an integer literal, possibly prefixed with either + or -

-9 0 +0

#include <iostream> -42 42 +42
-1023 1023 +1023

int main(); -1048576 1048576 +1048576

int main() {
std::cout << "The answer to the ultimate question is ";
std::cout << 42;
std::cout << std::endl;

return 0; Output:
} The answer to the ultimate question is 42

" Computer Engineering

UNIVERSITY OF WATERLO@ "~
FACULEY OF ENGINEERING i
2 Depapfment of Electrical &

.

Character literals

* Books are a sequence of letters, numbers or punctuation
« All of these symbols are collectively called characters

» There are two common representations of characters:
— ASCII*
— Unicode

! American Standard Code for Information Interchange

UNIVERSITY OF WATERLO@
FACUIinY OF ENGINEERING
De| ent of Electrical &

% Computer Engineering '

.

Character literals

ASCII is limited to 128 characters stored in one byte
— 33 code for non-printing control characters (e.g., TAB, BS, CR, BELL)

k! " # %X & T ()*+, -./0123456789:;<=>?7?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\NT]"™_
"abcdefghijklmnopgrstuvwxyz{]| 7} ~om

Most keyboards include all 95 printable ASCII characters and some
control characters 563 3 Y o
Bauaseaeenan

The BLANK TAB NL characters are [Z_][X_]mmm N mmmm
collectively called whitespace [Space]

characters

Reference: https://en.wikipedia.org/wiki/ASCII

https://en.wikipedia.org/wiki/ASCII

UNIVERSITY OF WATERLO@ =
FACULEY OF ENGINEERING

Department of Electrical &

Character literals

« Unicode is designed to encode most writing systems
— Unicode 11.0:
« contains 137,439 characters
* covers 146 modern and historic scripts
« symbol sets and emoji

T[ﬂ%&oo

§ el
-1 W Computer Engineerin:

Character literals

« Printable characters (those on a keyboard) can be literally encoded
in C++ source code by using single quotes:

##tinclude <iostream>
int main();

int main() {
std::cout << 'a’;
std::cout << 'b’';
std::cout << 'c’;
std::cout << std::endl;

return 0; Output:
} abc

@ of Electrica
% Computer Engineering

.

Escape sequences

* Problem: How do you store a literal single quote?
« Solution: escape sequences
— An escape character indicates that the next character is interpreted
« For C++ characters, the escape character is \

— The compiler sees '\'" but treats it as the single AscII character for
an apostrophe

» A literal backslash "\\'
 The TAB character "\t'

UNIVERSITY OF WATER = 0

\. \ A -
FACULEY OF ENGINEERING
.
@ Depvi\ent of Electrical & -
Computer Engineering .

End-of-line characters

» The AsciII representation was designed for teletype machines
— Automated typewriters

— The carriage return cr control character
("\r') moved the printing carriage back y
tO the Start Of the line y.. ' FEHRJ:\RY 17: JAPAN FINANCE MINISTER FACES

TOKYO (REUTERS) - JAPAN,S FINANCE MINIST]
PARLIAMENTARY CENSURE ON TUESDAY AFTER D
VEWS CONFERENCE, AS THE FUROR OVER HIS B

— The line feed LF control character (' \n"')
rotated the roller for the next line

* The new-line character

AR PRIME MINISTER TARO ASO.

 You needed to send both characters: cr LF

Al

End-of-line characters

« Computer screens automatically go to the start of the next line
— Unix (and now Linux and macOS) chose LF
— The classic Mac OS chose cr
— Microsoft DOS kept both: crLF

» This causes compatibility and portability issues...
— In C, your code depends on the platform:
printf("Hello world!\n"); // Unix/Linux/mac0S
printf("Hello world!\r"); // classic Mac 0OS
printf("Hello world!\r\n"); // Microsoft

— In C++, the compiler deals with it:
std::cout << "Hello world!";
std::cout << std::endl;

o

String literals

A sequence of characters is described as a string of characters
— More simply, a string

When we include "Hello world!" directly in our source code, we call
this a string literal

— That is literally the string to be used

A string encompasses all characters after the opening double quote
up to the closing double quote, which must be on the same line

A string with a single character is not a character:
— 'a' and "a" are different

A string with no characters is valid:

— 1s nonsensical: a character must be a character

Escape sequences

» The escape sequence for C++ strings is also the backslash:
std::cout << "She said \"Hello world!\"";

She said "Hello world!"

std::cout << "Look in C:\\Users\\dwharder";

Look in C:\Users\dwharder

std::cout << "Times:\t0.1 s\t23.4 s\t56.789 s\t0 s";

Times: ©.1 s 23.4 s 56.789 s QO s

I I | I I
Tab stops

O
@ FACULT -
De| ent of Electrical &
% Computer Engineering

Escape sequences

» The escape sequence is only for encoding

— Internally, "She said \"Hello world!\"" 1is stored as 23
characters

« Escape sequences are common in computer programming;:
— The Extended Markup Language (XML), tags use < and >
<p>Hello world!</p>
— How do you print < or > or non-ascii characters?
— XML uses & followed by ;
« > codes the greater-than symbol (>)
« ∞ codes the infinity symbol ()
« & codes the ampersand (&)

W UNIVERSITY OF WATER LO 0

¥/\J FACULEY OF ENGINEERING i

@ Dep#\ent of Electrical & -
Computer Engineering a\

N -

Floating-point literals

« We cannot store real numbers to arbitrary precision
— nto 769 digits of precision:

3.1415926535897932384626433832795028841971693993751058209749445
923078164062862089986280348253421170679821480865132823066470938446
0955058223172535940812848111745028410270193852110555964462294895493038
19644288109756659334461284756482337867831652712019091456485669234603486104
5432664821339360726024914127372458700660631558817488152092096282925409171536436
789259036001133053054882046652138414695194151160943305727036575959195309218611738193
261179310511854807446237996274956735188575272489122793818301194912983367336244065664
308602139494639522473719070217986094370277053921717629317675238467481846766940513200

056812714526356082778577134275778960917363717872146844090122495343014654958537105079
2279689258923542019956112129021960864034418159813629774771309960518707211349999998- - -

* We can only store a finite number of digits of precision relative to a
decimal point

— We call such representations floating-point

@ of Electrica
% Computer Engineering

.

Floating-point literals

* Any sequence of decimal digits that has a decimal point (period)
somewhere is considered a floating-point literal

— Can be prefixed by either a + or -
-0.42 4.2 +42.0
+0.1023 -10.23 1023.0
0.1048576 +1048.576 -1048576.0

— Other representations are possible—we will discuss these later

UNIVERSITY OF WATERLO®@
FACULEY OF ENGINEERING
Department of Electrical &

» . Computer Engineering

.

Floating-point literals

 Printing floating-point numbers is different printing other literals:

#include <iostream>
int main();

int main() {

std::cout << "Some floats: ";
std::cout << std::endl;
std::cout << 3.0;

std::cout << std::endl;
std::cout << 3.14;

std::cout << std::endl;
std::cout << 3.141592653589793;

Output:
Some floats:

std::cout << std::endl; 3
3.14
return ©; 3.14159

UNIVERSITY OF WATERLO®@
FACULEY OF ENGINEERING
Department of Electrical &

» . Computer Engineering

.

Boolean literals

« The last category of literal in C++ are Boolean literals:
true|false
#include <iostream>
int main();

int main() {
std: :cout << true;
std::cout << std::endl;
std: :cout << false;
std::cout << std::endl;

return 0;

} Output:
1
0

W UNIVERSITY OF WATERLO@
@ FACULEY OF ENGINEERIN

Departfment of Electrical &

-

Sample code

« Examples of literal data are shown here:
https://replit.com/@dwharder/Literal-data

UNIVERSITY OF WATERLO@ =
FACULEY OF ENGINEERING
Deparfment of Electrical &

Computer Engineering

Summary

 After this lesson, you now
— Understand the idea of literal data in source code
— You understand how to encode
* Integers
« Characters
 Strings
 Floating-point numbers (reals)
* Boolean
in your source code

— Everything else in C++ deals with the storage and manipulation of
data

W UNIVERSITY OF WATERLO®@
AS FACULEY OF ENGINEERIN!
€Y Depar

ent of Electrical &
W Computer Engineering

.

References

[1] Wikipedia
https://en.wikipedia.org/wiki/Literal (computer programming)

[2] cplusplus.com tutorial
http://www.cplusplus.com/doc/tutorial /constants/

[3] C++ reference
https://en.cppreference.com/w/cpp/language/integer literal

https://en.cppreference.com/w/c/language/integer constant

https://en.wikipedia.org/wiki/Literal_(computer_programming)
http://www.cplusplus.com/doc/tutorial/constants/
https://en.cppreference.com/w/cpp/language/integer_literal
https://en.cppreference.com/w/c/language/integer_constant

UNIVERSITY OF WATERLOG@

g7 2
E} FACULEY OF ENGINEERIN
@ Department of Electrical &

Computer Engineering
&

Acknowledgments

Proof read by Dr. Thomas McConkey

UNIVERSITY OF WATERLO@ =
FACULEY OF ENGINEERING

Department of Electrical &
" Computer Engineering

*

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/
for more information.

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

